The backward Euler-Maruyama method for invariant measures of stochastic differential equations with super-linear coefficients

نویسندگان

چکیده

The backward Euler-Maruyama (BEM) method is employed to approximate the invariant measure of stochastic differential equations, where both drift and diffusion coefficient are allowed grow super-linearly. existence uniqueness numerical solution generated by BEM proved convergence underlying one shown. Simulations provided illustrate theoretical results demonstrate application our in area system control.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure exponential stability of backward Euler-Maruyama discretizations for hybrid stochastic differential equations

This is a continuation of the first author’s earlier paper [17] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler–Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [17] is the global Lipschitz condition. However, we will show in this paper that without this gl...

متن کامل

Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching

Stochastic differential equations with Markovian switching (SDEwMSs), one of the important classes of hybrid systems, have been used to model many physical systems that are subject to frequent unpredictable structural changes. The research in this area has been both theoretical and applied. Most of SDEwMSs do not have explicit solutions so it is important to have numerical solutions. It is surp...

متن کامل

Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations

Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. Recently,...

متن کامل

Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations

Influenced by Higham, Mao and Stuart [10], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. In this ...

متن کامل

Backward Stochastic Differential Equations with Stochastic Monotone Coefficients

We prove an existence and uniqueness result for backward stochastic differential equations whose coefficients satisfy a stochastic monotonicity condition. In this setting, we deal with both constant and random terminal times. In the random case, the terminal time is allowed to take infinite values. But in aMarkovian framework, that is coupled with a forward SDE, our result provides a probabilis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2023

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2022.09.017